Archive for Gerak Harmonik Sederhana

Gerak Harmonik Sederhana

GERAK HARMONIK SEDERHANA

Setiap gerak yang terjadi secara berulang dalam selang waktu yang sama disebut gerak periodik. Karena gerak ini terjadi secara teratur maka disebut juga sebagai gerak harmonik/harmonis. Apabila suatu partikel melakukan gerak periodik pada lintasan yang sama maka geraknya disebut gerak osilasi/getaran. Bentuk yang sederhana dari gerak periodik adalah benda yang berosilasi pada ujung pegas. Karenanya kita menyebutnya gerak harmonis sederhana. Banyak jenis gerak lain (osilasi dawai, roda keseimbangan arloji, atom dalam molekul, dan sebagainya) yang mirip dengan jenis gerakan ini, sehingga pada kesempatan ini kita akan membahasnya secara mendetail.
Dalam kehidupan sehari-hari, gerak bolak balik benda yang bergetar terjadi tidak tepat sama karena pengaruh gaya gesekan. Ketika kita memainkan gitar, senar gitar tersebut akan berhenti bergetar apabila kita menghentikan petikan. Demikian juga bandul yang berhenti berayun jika tidak digerakan secara berulang. Hal ini disebabkan karena adanya gaya gesekan. Gaya gesekan menyebabkan benda-benda tersebut berhenti berosilasi. Jenis getaran seperti ini disebut getaran harmonik teredam. Walaupun kita tidak dapat menghindari gesekan, kita dapat meniadakan efek redaman dengan menambahkan energi ke dalam sistem yang berosilasi untuk mengisi kembali energi yang hilang akibat gesekan, salah satu contohnya adalah pegas dalam arloji yang sering kita pakai. Pada kesempatan ini kita hanya membahas gerak harmonik sederhana secara mendetail, karena dalam kehidupan sehari-hari terdapat banyak jenis gerak yang menyerupai sistem ini

Gaya Pemulih pada Gerak Harmonik Sederhana

n  Gaya Pemulih pada Pegas

k = konstanta pegas (N/m)

y = simpangan (m)

n  Gaya Pemulih pada Ayunan Bandul Sederhana

m = massa benda (kg)

g = percepatan gravitasi (m/s2)

Peride dan Frekuensi

n  Periode adalah waktu yg diperlukan untuk melakukan satu kali gerak bolak-balik.

n  Frekuensi adalah banyaknya getaran yang dilakukan dalam waktu 1 detik.

n  Untuk pegas yg memiliki konstanta gaya k yg bergetar karena adanya beban bermassa m, periode getarnya adalah

n  Sedangkan pada ayunan bandul sederhana, jika panjang tali adalah l, maka periodenya adalah

Simpangan, Kecepatan, Percepatan

n  Simpangan Gerak Harmonik Sederhana

y = simpangan (m)

A = amplitudo (m)

ω = kecepatan sudut (rad/s)

f = frekuensi (Hz)

t = waktu tempuh (s)

Jika pada saat awal benda pada posisi θ0, maka

Besar sudut (ωt+θ0) disebut sudut fase (θ), sehingga

φ disebut fase getaran dan Δφ disebut beda fase.

Kecepatan Gerak Harmonik Sederhana

Untuk benda yg pada saat awal θ0 = 0, maka kecepatannya adalah

Nilai kecepatan v akan maksimum pada saat cos ωt = 1, sehingga kecepatan maksimumnya adalah

Kecepatan benda di sembarang posisi y adalah

Percepatan Gerak Harmonik Sederhana

Untuk benda yg pada saat awal θ0 = 0, maka percepatannya adalah

Nilai percepatan a akan maksimum pada saat sin ωt = 1, sehingga percepatan maksimumnya adalah

Arah percepatan a selalu sama dengan arah gaya pemulihnya.

Energi pada Gerak Harmonik Sederhana

Energi kinetik benda yg melakukan gerak harmonik sederhana, misalnya pegas, adalah

Karena k = mω2, diperoleh

Energi potensial elastis yg tersimpan di dalam pegas untuk setiap perpanjangan y adalah

Jika gesekan diabaikan, energi total atau energi mekanik pada getaran pegas adalah

Hukum Kekekalan Energi Mekanik pada Gerak Harmonik Sederhana

Terdapat dua jenis gerakan yang merupakan Gerak Harmonik Sederhana, yakni ayunan sederhana dan getaran pegas. Jika dirimu belum paham apa itu Gerak Harmonik Sederhana, silahkan pelajari materi Gerak Harmonik Sederhana yang telah dimuat pada blog ini. Silahkan meluncur ke TKP…..

Sekarang mari kita tinjau Hukum Kekekalan Energi Mekanik pada ayunan sederhana.

Untuk menggerakan benda yang diikatkan pada ujung tali, benda tersebut kita tarik ke kanan hingga mencapai titik A. Ketika benda belum dilepaskan (benda masih diam), Energi Potensial benda bernilai maksimum, sedangkan EK = 0 (EK = 0 karena benda diam ). Pada posisi ini, EM = EP. Ingat bahwa pada benda bekerja gaya berat w = mg. Karena benda diikatkan pada tali, maka ketika benda dilepaskan, gaya gravitasi sebesar w = mg cos teta menggerakan benda menuju posisi setimbang (titik B). Ketika benda bergerak dari titik A, EP menjadi berkurang karena h makin kecil. Sebaliknya EK benda bertambah karena benda telah bergerak. Pada saat benda mencapai posisi B, kecepatan benda bernilai maksimum, sehingga pada titik B Energi Kinetik menjadi bernilai maksimum sedangkan EP bernilai minimum. Karena pada titik B kecepatan benda maksimum, maka benda bergerak terus ke titik C. Semakin mendekati titik C, kecepatan benda makin berkurang sedangkan h makin besar. Kecepatan berkurang akibat adanya gaya berat benda sebesar w = mg cos teta yang menarik benda kembali ke posisi setimbangnya di titik B. Ketika tepat berada di titik C, benda berhenti sesaat sehingga v = 0. karena v = 0 maka EK = 0. pada posisi ini, EP bernilai maksimum karena h bernilai maksimum. EM pada titik C = EP. Akibat tarika gaya berat sebesar w = mg cos teta, maka benda bergerak kembali menuju titik B. Semakin mendekati titik B, kecepatan gerak benda makin besar, karenanya EK semakin bertambah dan bernilai maksimum pada saat benda tepat berada pada titik B. Semikian seterusnya, selalu terjadi perubahan antara EK dan EP. Total Energi Mekanik bernilai tetap (EM =EP + EK).

Comments (1) »

Ikuti

Get every new post delivered to your Inbox.